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We investigate the transition to turbulence in a free shear layer which contains a thin 
central region of stable density stratification. The fluid is assumed to possess Prandtl 
number significantly larger than unity, and the flow may exhibit either Holmboe or 
Kelvin-Helmholtz (KH) instability, depending upon the intensity of the strati- 
fication. A sequence of two-dimensional nonlinear numerical simulations of flows 
near the KH-Holmboe transition (i.e. having bulk Richardson numbers near a) 
clearly illustrates the structural relationship between Holmboe and Kelvin- 
Helmholtz waves. The time-dependent nonlinear wave states delivered by the 
simulations are subjected to a three-dimensional normal-mode stability analysis in 
order to discover the physical processes that might drive the flow towards a 
turbulent state. Strong secondary instability is found to persist up to large spanwise 
wavenumbers, with no indication of a preferred lengthscale. These results indicate 
that secondary instability may lead the flow directly into the turbulent state. 

1. Introduction 
The transition to turbulence in a stably stratified flow is a process of central 

importance in geophysical fluid systems. The evolution of such flows is commonly 
studied in terms of a model problem in which the initial state is assumed to consist 
of a free shear layer, or mixing layer, in a fluid whose density varies in the vertical 
direction. In naturally occurring flows, density tends to decrease exponentially with 
height, a circumstance that is difficult to create in the laboratory, and one which 
involves theoretical complexities owing to the ability of the fluid to radiate energy 
away from the shear layer in the form of internal waves. These additional 
complexities are often bypassed by focusing consideration upon the case in which 
density varies only in a localized region surrounding the centre of the shear layer, a 
situation which is also common in geophysical flows. (The stratified layer is usually 
assumed to be located symmetrically with respect to the shear layer in order to avoid 
further complications due to asymmetry.) The influence of diffusion tends to drive 
such parallel flows towards a state in which the ratio of the depth of the shear layer 
to the depth of the stratified layer is equal to Pri, Pr being the Prandtl number 
(Smyth, Klaassen & Peltier 1988). In  the Earth’s atmosphere, Pr x 1, and those 
interested in atmospheric applications have thus tended to focus on the case in which 
the shear layer and the stratified layer have equal depths. These flows are linearly 
stable unless the minimum Richardson number is less than a, in which case the flow 
succumbs to Kelvin-Helmholtz (KH) instability (see Klaassen & Peltier 1985a, and 
references therein). In  many geophysically relevant flows, however, the Prandtl 
number is significantly greater than unity. Thermally stratified water, for example, 
has Pr x 7, and salt-stratified water, as found in the oceans and which is employed 
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as the working fluid in most laboratory experiments on density-stratified flows, is 
characterized by Prandtl numbers of order lo2. In these systems, we are more likely 
to see stratification confined primarily to  a thin region surrounding the centre of the 
shear layer. This is the initial flow whose evolution we shall examine in the present 
paper. 

Since the gradient Richardson number drops to  zero away from the height of 
maximum shear in circumstances in which the stratified layer is sufficiently thin 
compared to the shear layer (e.g. Hazel 1972), this flow cannot usefully be 
characterized in terms of a minimum Richardson number, and one therefore employs 
in its place a bulk Richardson number Ri, which is equal to the value of the gradient 
Richardson number a t  the centre of the shear layer. When Ri is less than a critical 
value Ri,, the flow is unstable to Kelvin-Helmholtz waves (Ri, is equal to or 
somewhat greater than a), whereas when Ri > Ri, the flow exhibits Holmboe (or 
' cusped ') instability, an oscillatory disturbance having the appearance of a standing 
wave which periodically ejects plumes of stratified fluid away from the shear layer. 
In  the inviscid limit, Holmboe instability persists up to arbitrarily large Ri. The 
linear stability of this initial state has been examined by Holmboe (1962), Hazel 
(1972), Nishida & Yoshida (1982) and Smyth & Peltier (1989, 1990). Experimental 
analyses of Holmboe waves have been carried out by Thorpe (1968), Browand & 
Wang (1972), Browand & Winant (1973), Yoshida (1977), Koop 8: Browand (1979) 
and Lawrence et al. (1987, 1990). Smyth et al. (1988) described the first finite- 
amplitude simulations of two-dimensional Holmboe waves using a standard, second- 
order accurate finite-difference model. 

Since the seminal work of Ruelle & Takens (1971), it has become evident that an 
initially laminar flow may become turbulent via a finite sequence of distinct 
transitions corresponding to linear instabilities (as opposed to the earlier theory due 
to Landau, which required an infinite sequence of transitions). Cylindrical Couette 
flow (e.g. Di Prima & Swinney 1981) and Rayleigh-Bc'nard convection (e.g. Busse 
1981) are examples of flows which have been found to  evolve in accordance with this 
scenario as the value of an external forcing parameter is increased, and it seems likely 
that the time evolution of stratified shear layers may also be usefully examined in the 
context of this general paradigm, despite the absence of external forcing in models 
currently under investigation. Significant progress has been achieved in this 
direction for the case Pr = 1. Secondary instabilities in the form of convection rolls, 
knots, etc., introduce dependence upon the third spatial coordinate, which represents 
a crucial step on the route to turbulence, while pairing instabilities complicate the 
flow in two dimensions (see Klaassen & Peltier 1989, 1991; Collins & Maslowe 1988; 
or the review by Thorpe 1987 b ) .  Corresponding investigations have been carried out 
for the unstratified case (e.g. Pierrehumbert & Widnall 1982; Metcalfe et al. 1987). 

Much less is known regarding the class of flows which exhibit Holmboe instability. 
One rather unique result, suggested by Browand & Wang (1972) and proved by 
Smyth & Peltier (1990), is that the initially one-dimensional flow may bifurcate 
directly into a three-dimensional state in a single transition (i.e. without the need for 
an intervening two-dimensional state). The laboratory experiments of Maxworthy & 
Browand (1975) reveal structures that are strongly suggestive of this three- 
dimensional Holmboe wave. However, this three-dimensional primary instability 
occurs only a t  small Reynolds numbers, where the flow is unlikely to  develop strong 
turbulence, and over a restricted range of Ri .  In general, the three-dimensional (and 
eventually turbulent) state must develop via secondary instability. Other laboratory 
investigations of Holmboe waves (Browand & Winant 1973; Koop 1976) have 
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revealed structures which are two-dimensional except for small, turbulent ‘puffs ’ 
which appear on the plumes of the Holmboe wave. A theoretical explanation for 
these observations will be advanced in the present paper. 

The research that we shall describe here has been undertaken with two main 
purposes in mind. Firstly, the work represents a continuation of our investigations 
into the rich phenomenology exhibited by flows occurring near the KH-Holmboe 
transition (see also Smyth et al. 1988; Smyth & Peltier 1989, 1990), and in this 
context we shall further examine the structural relationship between Holmboe and 
Kelvin-Helmholtz waves. Secondly, we shall investigate via two-dimensional non- 
separable linear stability analysis the secondary instabilities which induce three- 
dimensional motions in two-dimensional nonlinear Holmboe waves, and thus 
endeavour to explain the two distinct mechanisms for the introduction of three- 
dimensionality which have been observed in the laboratory experiments discussed 
above. These two goals are closely related. Since Holmboe waves become increasingly 
time-dependent as Ri becomes large (Ri $ Ri,), only in waves that develop near the 
KH-Holmboe transition can we expect the time-dependence of the two-dimensional 
flow to be sufficiently slow to permit a stability analysis in terms of normal modes. 

In  $2, we describe a sequence of two-dimensional nonlinear simulations of flows 
near Ri = Ri, which illustrate previously undiscovered aspects of the relationship 
between Kelvin-Helmholtz and Holmboe waves. In $3, we test the stability of these 
nonlinear waves to fully three-dimensional disturbances and elucidate in part 
the physical processes which must drive these flows towards the turbulent state. 
Section 4 contains a summary of our main conclusions. 

2. Two-dimensional basic states 
2.1. Methodology 

In  this subsection, we will describe in detail the numerical model that  has been 
developed to simulate the evolution of two-dimensional nonlinear Kelvin-Helmholtz 
and Holmboe waves. For consistency with previous studies, we have assumed that 
the density stratification is thermal in origin and therefore have written the 
equations in terms of a potential temperature deviation. As the latter quantity is 
related to the potential density deviation by a simple change of sign, the results 
described here hold equally well for flows in which density stratification is otherwise 
produced. 

The model equations are non-dimensionalized using a lengthscale h equal to  the 
half-depth of the shear layer, a velocity scale I‘ equal to  half the total change in 
velocity across the shear layer, and a potential temperature deviation scale R6, in 
which R is the ratio of the depth of the shear layer to the depth of the stratified layer 
and 6 is half the total potential temperature change across the flow. Non-dimensional 
parameters appearing in the model equations are the Reynolds number Re = hV/v ,  
the Prandtl number Pr = V / K ,  and the bulk Richardson number Ri = ghS/P@,. v 
and K are the diffusivities for momentum and heat, g is the gravitational acceleration 
and 0, is the constant reference potential temperature from which the deviation B 
is measured. 

The two-dimensional waves that we shall examine here evolve from initial 
conditions of stably stratified shear flow for which the horizontal velocity and 
potential temperature deviations from the mean are given by: 

u = tanh ( z - i H ) ,  B = R-I tanh R(z-$H), (1) 
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in which H is the height of the computational domain. As was demonstrated in 
Smyth et al. (1988), setting R = Pri forces R to remain approximately constant as the 
background profiles diffuse. In the present study, our attention will be focused upon 
the representative case R = 3,  Pr = 9. The Reynolds number will be fixed to the 
value Re = 400, and the bulk Richardson number Ri varied in order that we may 
examine the effects of changing ambient stratification upon the nonlinear waves as 
the KH-Holmboe transition is traversed. In  addition to rendering the problem 
numerically tractable, the above choice of parameter values will allow us to closely 
approximate laboratory realizations of Kelvin-Helmholtz and Holmboe waves, as 
these waves are typically generated in flows with Reynolds numbers on the order of 
a few hundred. 

Using the non-dimensionalization described above, the Boussinesq equations for a 
two-dimensional, thermally-stratified flow may be written as : 

wt = a(w,  $) + RiO, + Rec1V2w, 

Ot = a(0, $) + (RePr)-'V28, (2 b)  

w = V2@, ( 2 4  

in which w and @ are the spanwise vorticity and the streamfunction, B is the potential 
temperature, x and z are the streamwise and vertical coordinates, and t is the time. 
Subscripts denote partial derivatives, a(a, b)  = a, b,-a,b, is the Jacobian operator 
and V2 represents the two-dimensional Laplacian a,. + azz. The streamfunction is 
defined by u = -(rz and w = @,, in which u and w are the streamwise and vertical 
velocity components, respectively. 

At the upper and lower boundaries ( x  = 0 and z = H )  of the computational domain, 
we impose free-slip, isothermal boundary conditions : 

w = $ = O ,  i3,=0. (3) 

We seek solutions of (2) which are periodic in the streamwise direction, having 
wavelength L and fundamental wavenumber cr = 2n/L. Accordingly, we assume that 
the dependent fields may be written in the form 

in which f may represent w ,  @ or 0. Note that f- = f ,*, since f(z: z,  t )  must be real. 
Because of this, we need only compute f, for u = 0, 1 , 2 , .  . . , N .  

Substituting (4) into (2) and applying the usual Galerkin formalism, we obtain 
the following set of PDEs for the coefficient functions w,(z, t ) ,  I$,,(z, t )  and OU(z, t ) ;  
u = - N , N :  
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in which A- = max ( v - N ,  - N )  and A, = min ( v + N , N ) .  The z-dependence in these 
equations is now cast into finite-difference form by replacing z with a discrete 
variable zP, p = 1,2,  . . . , M ,  replacing the coefficient functions f,,(z) with fPY = f,,(zP) and 
replacing vertical derivatives with their second-order finite difference equivalents, 
viz. : 

in which Az = H / ( M -  1) .  The resulting set of evolution equations is stepped forward 
in time using the leapfrog method with an Euler backstep employed every 20 
timesteps to prevent splitting errors. Before the solution fields wP,, and OPLy can be 
stepped forward in time, we must calculate $Pv by inverting (5c), which becomes 

with summation over K implied. For each v ,  we compute the inverse of the matrix A E  
and multiply it onto the appropriate column of wPY. As the matrices A 2  are 
independent of time, their inverses are calculated only once and then stored on disk 
for use in the remainder of the simulation. 

For the parameter values employed in the present study, we have generally found 
it  sufficient to  use a timestep At = 0.0375 (in non-dimensional units), M = 251 
vertical grid points, and N = 96 horizontal modes, although it has been necessary for 
some simulations to increase N to 120 modes. 

To prevent the solutions from becoming excessively contaminated by small-scale 
noise, we apply a low-pass filter to the dependent fields every 20 timesteps. I n  the 
x-direction, the filtering process simply involves multiplying the Fourier coefficients 
in (4) by a spectral transfer function 

if v < N,, 

if Nf< v < N ,  

in which c = 0.2 and N, = 0.67N. In the z-direction, we apply a real-space smoothing 
operator 

K 

fPY + k=O c i A l C ( f p + k .  ”+fP-k,v)r (7)  

with K = 7 and A ,  = 0.82, A ,  = 0.324354, A ,  = -0.233872, A ,  = 0.127566, 
A ,  = -0.043663, A ,  = 0, A ,  = 0.009.539 and A ,  = -0.003924, which has spectral 
properties equivalent to (6). The result is that  while medium and large-scale features 
are damped only by the Laplacian diffusion terms in (2), small-scale features 
experience an additional damping influence which is equivalent, at the smallest 
resolvable scales, to a decrease in the Reynolds number from 400 to approximately 
140. It should be noted that while this low-pass filtering procedure directly affects 
only those features which are characterized by lengthscales less than 1.5 times the 
smallest resolvable scale, nonlinear interactions could in principle distribute the 
effects of the filtering process to  larger-scale features. However, comparison of the 
results to be displayed here with results from test simulations performed a t  higher 
resolution and without filtering indicates that  filtering effects are, in fact, confined to 
small scales. 
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FIQURE 1. Regimes of instability for the stratified shear flow ( l ) ,  with R = 3 and Pr = 9. Dots 
indicate points for which further analyses are presented. 

An important consideration in the design of these simulations is the fact that the 
action of diffusion on the mean flow tends to broaden the shear layer and the 
stratified layer so as to cause the effective values of a and Ri to  increase in time 
(Smyth et al. 1988). In the vicinity of the KH-Holmboe transition, this can have a 
marked effect on the evolution of the waves which would obscure the phenomena 
which we wish to investigate. In order that the properties of the finite-amplitude 
wave may correspond as closely as possible to the stability characteristics of the 
original stratified shear flow, we arrange for waves to attain finite amplitude early in 
the simulation by initializing the model with a disturbance that has identical spatial 
structure to that of the fastest-growing eigenmode of the original parallel flow. The 
amplitude of this disturbance is chosen to be as large as is consistent with the 
linearization of the equations employed to perform the stability analysis. The 
eigenmodes are computed via a Galerkin technique which is described in detail in 
Smyth & Peltier (1990). We emphasize that the eigenfunction initialization just  
described has been employed only in the interests of computational efficiency. 
Auxiliary simulations have been conducted in order to ensure that the important 
features which have been observed in the evolving flows are not strongly dependent 
on the initial conditions. 

2.2. Results 
In this subsection we shall present results from four simulations which have been 
performed using Re = 400, a = 0.3 and Ri = 0.28, 0.26, 0.25 and 0.23. These points 
in parameter space are indicated by dots on figure 1 .  The outer points, Ri = 0.28 and 
Ri = 0.23, lie relatively far inside the Holmboe and Kelvin-Helmholtz regimes, 
respectively, while the inner points, Ri = 0.26 and Ri = 0.25, lie close to the 
KH-Holmboe transition, which is located a t  approximately Ri = 0.255. These flows 
lie just outside the region of parameter space in which the primary instability is 
three-dimensional (cf. Sl), and are thus representative of the large class of stratified 
shear flows which cannot achieve three-dimensionality except via secondary 
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FIGURE 2. Natural logarithm of the wave kinetic energy for simulations employing bulk 
Richardson numbers Ri = 0.28, 0.26, 0.25 and 0.23. 

instability. Each simulation was terminated near the state of maximum wave kinetic 
energy (see (8) below), by which time strong three-dimensional instability was 
invariably evident. 

Figure 2 shows the time history of the wave kinetic energy K ,  which is defined by 

for each of these four simulations. It is clear that the Kelvin-Helmholtz waves a t  
Ri = 0.23 and Ri = 0.25 grow monotonically to maximum amplitude, while the 
Holmboe waves a t  Ri = 0.26 and Ri = 0.28 are oscillatory throughout their 
evolution. The KH-Holmboe transition is thus located in accordance with the 
prediction of linear theory. 

The spatial forms of the potential temperature and vorticity fields associated with 
the two-dimensional Holmboe and Kelvin-Helmholtz waves are also useful 
diagnostics. They are most clearly represented by contour plots corresponding to 
selected points in the time evolution of the wave. The spacing between the 8 contours 
is the same for all such representations to  be described below, as is the spacing 
between the w contours. The simulations will be discussed in order of descending bulk 
Richardson number, i.c. moving from the Holmboe regime into the Kelvin- 
Helmholtz regime. I n  the Ri = 0.28 and Ri = 0.23 cases, we will be mainly 
interested in noting factors which may influence the stability of the finite-amplitude 
Holmboe and Kelvin-Helmholtz waves to three-dimensional perturbations. In the 
cases Ri = 0.26 and Ri = 0.25, we will focus attention upon certain nonlinear aspects 
of the structural relationship between Holmboe and Kelvin-Helmholtz waves which 
have not been previously observed. 

Figures 3 ( a ,  b )  and 4 contain selected 0 and w plots for the Holmboe wave with 
Ri = 0.28. This sequence of figures encompasses roughly one period of the oscillation 
which characterizes this class of waves. Clearly visible are the counterpropagating 
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FIGURE 3 (a).  For caption see facing page. 

component modes which were discussed in detail by Smyth et al. (1988) and by 
Holmboe (1962). In  contrast to the more strongly stratified cases investigated by 
Smyth et al. (1988), we observe here an extreme degree of interaction between the 
upper and lower modes. Plume ejection begins just after the component modes pass 
each other (e.g. t = 190; plume tips are indicated by arrows on figure 3 b ) .  The 
resulting plumes involve the entire stratified layer, inducing large distortions and 
even overturning in the central potential temperature interface, on which 0 = 0 (e.g. 
t = 240; the region of overturned 6 = 0 contours is indicated by an arrow). Although 
local shear acts to suppress convective instability in this two-dimensional flow, and 
the overturning of the central temperature interface is therefore subsequently 
reversed, we will see in the next section that the wave is strongly unstable to three- 
dimensional convective activity at these points in its evolution. In contrast to these 
transitory overturning events, weaker static instability in the outer regions of the 
plumes persists throughout most of the wave’s oscillatory cycle. As is evident upon 
inspection of figure 4 (also see Smyth et al. 1988), the plumes contain strong gradients 
of vorticity, which may also be expected to contribute to the secondary instability 
of the finite-amplitude wave. 
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FIQURE 3. (a)  Contours of the potential temperature deviation field at selected times for the 
Holmboe wave at Ri = 0.28. ( b )  Continuation of figure 3 (a). Arrows indicate : plume tips at t = 190, 
region of strong convective instability at t = 240. 

In figures 5 and 6, we present selected potential temperature and vorticity fields 
for the case Ri = 0.26, which is just slightly to the Holmboe side of the KH-Holmboe 
transition. The evolution which we observe here is distinctly different from that 
predicted by linear theory. Although the wave grows to finite amplitude in a manner 
characteristic of Holmboe instability, it subsequently experiences an overturning of 
the central temperature interface (beginning at  t = 130, see arrows on figure 5 )  which 
is sufficient in degree and duration to overcome the stabilizing effect of the local shear 
and cause a nonlinear roll-up which leads to the formation of a vortex structure 
which is very similar to a Kelvin-Helmholtz wave. The alternating regions of 
positive and negative vorticity which are characteristic of Kelvin-Helmholtz 
vortices (e.g. Klaassen &, Peltier 1985a; Smyth et al. 1988) are visible in the vorticity 
fields which are displayed in figure 6. While remnants of the counterpropagating 
components modes of the Holmboe wave are still identifiable, it is clear that the 
' KH ' structure has entrained most of the wave energy. This result suggests that the 
level of stratification needed to sustain Holmboe waves a t  h i t e  amplitude may be 
somewhat in excess of that predicted by linear theory. 
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FIGURE 4. Contours of the vorticity field at selected times for the Holmboe wave at Ri = 0.28. 

Potential temperature fields for the case Ri = 0.25 are shown in figure 7. This value 
of Ri lies slightly to the KH side of the KH-Holmboe transition. Until t = 60, this 
disturbance differs little from a Holmboe wave. Distinct upper and lower component 
modes are clearly visible at t = 50, a feature which is never observed in 
Kelvin-Helmholtz waves at weaker stratification, but the stratification is not quite 
strong enough to allow the modes to propagate independently, and they subsequently 
roll up to form a Kelvin-Helmholtz vortex. The evolution of the wave shown in 
figure 7 could also be interpreted in terms of resonant wave interactions (e.g. Collins 
& Maslowe 1988). In this context, one observes that the nonlinear interaction 
between the dominant mode (a  = 0.3) and its first harmonic (a = 0.6) causes the 
latter t o  be strongly excited during the initial evolution of the flow. The resulting 
waveform is strikingly similar to that which evolves when a pair of KH vortices 
amalgamates due to subharmonic instability (e.g. figure 5 of Collins & Maslowe 
1988). The results of the simulations at Ri = 0.26 and Ri = 0.25 indicate that the 
relationship between K H  and Holmboe waves in the vicinity of the KH-Holmboe 
transition is complicated considerably by nonlinear effects. 

In  figure 8, we present selected 6 fields for the final case in this sequence, in which 
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FIGURE 5. Contours of the potential temperature deviation field at selected times for the ‘marginal ’ 
Holmboe wave at Ri = 0.26. Arrows indicate regions of strong convective instability. 

Ri = 0.23. This value o f R i  locates the flow well inside the K H  regime. The evolution 
of the wave is similar in a broad sense to that observed in the case Ri = 0.25 (cf. figure 
7) ,  but there is no trace of the distinct upper and lower component modes which were 
so clearly visible in that case. It will be noted that the form of the wave a t  finite 
amplitude is considerably more complex than the simple ‘ cat’s eye ’ structure that is 
associated with Kelvin-Helmholtz waves a t  smaller Prandtl number. The inter- 
weaving ‘fingers’ of hot and cold fluid identified by Klaassen & Peltier (1985~)  do 
not, in the prcsent case, roll up into a smooth spiral but rather behave in a manner 
reminiscent of thermal plumes, as the intense temperature gradients which this high- 
Prandtl-number system can support generate regions of strong convective in- 
stability. As will be seen in the next section, these regions also support intense three- 
dimensional secondary instability. 
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FIGURE 6. Contours of the vorticity field at selected times for the ‘marginal’ Holmboe wave at 
Ri = 0.26. 

3. Three-dimensional stability analysis 
3.1. Methodology 

In this subsection, we shall describe the methods developed to test i,he stability of the 
previously discussed two-dimensional nonlinear wave states to three-dimensional 
perturbations. The method we shall employ to conduct these analyses is based on 
that described by Klaassen & Peltier (1985b), to  which the reader may refer for 
additional detail. This methodology is itself based upon the earlier work of Clever & 
Busse (1974) on the stability of two-dimensional convection rolls against arbitrary 
three-dimensional fluctuations. 

As in 82, we begin with the Boussinesq equations for a thermally stratified flow. 
As the flows being considered are no longer two-dimensional, however, we must 
abandon the vorticity-streamfunction formulation (2) and describe the basic state in 
terms of the streamwise and vertical velocity fields 0 and @, together with the 
potential temperature deviation 8. Note that tildes are used to distinguish the two- 
dimensional wave fields computed in § 2 from the three-dimensional perturbation 
fields which we shall now introduce. 
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FIGURE 7. Contours of the potential temperature deviation field at selected times for the ‘marginal ’ 
Kelvin-Helmholtz wave at Ri = 0.25. 

In the present analyses, we shall consider only those disturbances having the same 
streamwise periodicity as the basic state wave. (It might be supposed that the 
evolution of the Holmboe wave will be strongly influenced by other classes of 
instability, such as those involving subharmonics of the basic state wave, but 
consideration of these modes is beyond the scope of the present work. See $4 for 
further discussion of this issue.) Furthermore, we assume, subject to justification 
a posteriori, that the perturbations evolve on a faster timescale than does the two- 
dimensional nonlinear wave, so that the time-dependence in the latter may be 
neglected. These assumptions imply that the velocity, potential temperature and 
pressure fields in the three-dimensional flow have the Floquet form 

in which f(x, z )  is periodic in x with period 2n/a, u, b and d are the complex growth 
rate and real streamwise and spanwise wavenumbers of the disturbance, respectively, 
and E is an ordering parameter. Note that the total fields are periodic in x only if b 
is commensurate with a. The longitudinally symmetric disturbances which we 
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FIGURE 8. Contours of the potential temperature deviation field at selected times for the 
Kelvin-Helmholtz wave at  Ri = 0.23. 

investigate here have b = 0, but we will present the equations in the more general 
form for b =k 0. 

Substituting (9) into the Boussinesq equations we obtain, a t  order E ,  

aZi = - O(a, + ib) Zi - @ti,- (a, + ib) 04- oz &- (a, + ib) h + Re-'V22i; 

a& = - o(a,+ ib) &- @&, - (a, + ib) Efi- % &-@, +Ri6+Re-lV2&; 

(10) 
(11)  
(12) 
(13) 

0 = (a,+ib)Zi+id6+2;,, (14) 
in which Zi, 6 ,  &, 0 and 2; are the (x, 2)-dependent parts of the streamwise, spanwise 
and vertical velocity, potential temperature and pressure perturbations, respectively. 
Subscripts indicate partial derivatives, and the Laplacian operator V 2  becomes 
(a, + ib)2 +azz - d2. A diagnostic equation for the pressure is obtained by combining 
(lo),  (12) and (14), viz. 

a4 = - O(a, + ib) 6 - m6, - id$ + Re-'V26 ; 

cr6 = - &3, + ib) 6 -  @6, - (a, + ib) 86 - 8, & + (RePr)-lV26; 
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We replace (14) with (15), and find as a result that (11)  decouples from the 
remainder of the system. We a;e thus left with four equations, (lo), (12), (13) and (15) 
for the dependent fields Zi, &,8 and 2;. In addition we have (11) and (14), which may 
be used to  compute the spanwise velocity field in two independent ways and thus 
verify the accuracy of the computations. 

In  order to convert these equations into an eigensystem, we must discretize the 
(z, 2)-dependence of the solution fields. This is accomplished via the Galerkin method, 
using the expansions 

in which I A=-L u-0 A--L u-0 

Following Klaassen & Peltier (1985b), we employ the truncation scheme 

in which N is an odd integer and square brackets indicate the largest integer not 
exceeding the value of the enclosed quantity. Owing to the limited main memory on 
the machines available to us, we must restrict the truncation parameter N to values 
not exceeding 29. Resolution tests indicate that this truncation level is adequate for 
our present purposes. We now substitute (16) into the perturbation equations (lo), 
(12), (13) and (15) and diagonalize the left-hand side of the system by taking the 
appropriate inner products. Equation (15) is then solved for pAv and the result 
substituted into (10) and (12), leaving us with the following set of linear algebraic 
equations for the coefficicnts uAu, wAv and eAu: 

v u ~ p  = ( uu)2; uAu + ( uw)$ wAu + ( liT)$ eAu, (18a) 
g w ~ p  = (wu>$ uAu + (ww):; wAv + ( wT)$ eAu> (18b)  
reKp = < T U ) ~ ~ ~ , , + ( T W ) ~ ~ ~ , , + ( T T ) ~ ~ ~ ~ , .  (184 

Explicit expressions for the four-dimensional coefficient arrays ( U U ) ,  (UW),  etc. 
may be found in the Appendix. Equation (18) may be written in the form rV, = Ati J$, 
in which A is a constant matrix and V is the concatenation of { ~ ~ ~ , w ~ ~ , i 9 ~ , , } .  

Eigenvalues of A are computed using routines from the EISPACK library (Smith 
et al. 1977). Selected eigenvectors arc computed using the subroutine CHEVEC 
(Klaassen & Peltier 1985b), which requires considerably less core memory than does 
the corresponding EISPACK routine. 

The dynamical processes which govern the evolution of a given disturbance may 
be diagnosed by means of the perturbation kinetic energy equation, which may be 
written in the form 

(19) in which 
(20) 

v, = Y A  + Y t  -t R i X  + 9/Re, 
K = ((Zi*ii + ;*v" + &*$) ; 

Y A  = - ( (WZ + Oz) (Zi*?i),)/K 
Y t  = - (+(Oz-~) (Z i*Z i -&*6) ) / l c  
X = ( ( 6 * 6 ) , ) / K  
9 = ((Zi*V2Zi + v"*V2G + &*V2&),) /K (21) 
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FIGURE 9. Growth rate versus spanwise wavenumber for the fastest-growing three-dimensional 

disturbance at  selected times during the Ri = 0.28, 0.26, 0.25 and 0.23 simulations. 

(Klaassen & Peltier 1991 ; following Laprise & Peltier 1989), in which stars represent 
complex conjugates and angle brackets represent the integral 

<)=?I a 0  T[ 0 0  dxdydz. 

The terms on the right-hand side of (19) represent contributions to the growth of the 
perturbation kinetic energy K due to the shearing and straining deformations of the 
basic state velocity fields, convection associated with unstable potential temperature 
gradients, and dissipation due to viscosity, respectively. 

3.2. Results 
In figure 9, we show the growth rates of the dominant longitudinal normal modes as 
functions of the spanwise wavenumber d a t  selected times during each of the four 
simulations described in $2. In  previous studies of a similar nature (e.g. Klaassen & 
Peltier 1985b, 1985c, 1991), a,(d) has been shown to exhibit a strong local maximum, 
typically in the vicinity of d = 3. This indicates a secondary instability with a well- 
defined spanwise wavelength which should lead the flow into a complex, but 
nonetheless laminar, three-dimensional state. In contrast, we observe here a general 
tendency for a, to increase monotonically to large spanwise wavenumbers. (Similar 
results have been obtained by Orszag & Patera (1980) in the study of planar channel 
flows, and by Pierrehumbert & Widnall (1982) and Klaassen & Peltier (1991) in the 
analysis of longitudinal instabilities of the Stuart vortex.) Although dissipation must 
ultimately reduce the growth rate at  sufficiently small scales of motion, and extended 
calculations (not shown here) reveal that ar generally reaches a maximum around 
d = 5, there is no evidence of a strongly preferred spanwise wavenumber. We thus 

2n/~z2~ nld H 
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conclude that longitudinal instability of these flows is capable of injecting energy 
into very small scales of motion, and over a broad region of the wavenumber 
spectrum. This result suggests that secondary instability should lead these flows 
directly into the turbulent state. 

In the remainder of this section, we will examine these unstable modes in detail. 
We will identify the spatial locations at  which the amplitudes of the instabilities are 
greatest, and we will discover the manner in which the instabilities vary on the ‘slow ’ 
timescale associated with the evolution of the basic state wave. We will also seek to 
identify, via the energy equation (19), the physical processes which are responsible 
for these secondary instabilities. 

In figures 10, 12, 14 and 16, we display in compact form the data which are 
required in order to obtain the types of information mentioned in the preceding 
paragraph. The field represented by the solid contours is K F urK(x, z ) ,  K ( x ,  z )  
being the integrand appearing on the right-hand side of (20), averaged over one 
wavelength in the spanwise direction. The eigenfunctions are normalized so that the 
global maximum of K ( x , z )  is unity. The density of the contours thus indicates 
visually the rate at  which the perturbation kinetic energy grows at each location 
( x , z ) .  The unstable eigenmodes which the flow possesses at  each point in time are 
numbered sequentially (mode 1, mode 2, etc.) in order of descending growth rate, and 
we display K for mode 1 and also for one of the weaker modes. The latter is usually 
mode 2, but in some cases the third-strongest mode is of greater interest and we 
display that mode instead. The dotted curves appearing on the upper figures are 
loosely-spaced contours of the basic potential temperature field 6, which we include 
so that the location of the mode with respect to the two-dimensional wave may be 
seen without referring back to the more detailed representations of the previous 
section. Finally, each field contains numerical values of u, Y A ,  Y t ,  %‘ and 9. 
Presentations of these quantities as functions of time are found in separate figures. 
The choice of a spanwise wavenumber for these calculations is largely arbitrary in 
view of the results shown in figure 9, and the results tend not to vary significantly 
with d ;  the results which we have chosen to display here are for d = 4. 

In figure 10, we show k‘ for the Holmboe wave at  Ri = 0.28 during the time 
interval from t = 110 to t = 260. What we see in most of these plots is instability 
located in the plumes of the Holmboe wave, driven primarily by a combination of 
shear and convective activity, the latter associated with overturned potential 
temperature contours. An example of this is seen at  t = 110. The most intense 
instabilities are found at  times such as t = 120, when the plume-ejection mechanism 
has caused temporary overturning of the central temperature interface 6 = 0. We 
will examine the stability characteristics of the wave at  this point in its evolution in 
detail. Mode 1 and mode 2 (not shown) are primarily convective and are located in 
the ‘roots’ of the plumes, where static instability is most extreme. Somewhat 
surprisingly, we find that unstable modes rarely reside in the relatively undistorted 
regions of the stratified layer, such as the region located at the centre of the t = 120 
plot, even though the shearing deformation is generally strongest there. The shear- 
driven mode (mode 3) appearing at t = 120 is an exception to this. Mode 4 (not 
shown) resides in the body of the plume and is similar in appearance to the dominant 
mode at t = 110. 

The dominant mode a t  t = 130 is again located in the roots of the plumes where 
the 6 = 0 contour is overturned. Mode 2 is a ring-shaped structure composed of 
unstable modes located in the upper and lower plumes, which are vertically aligned 
at  this point. This ring-shaped disturbance is observed whenever the component 
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FIGURE 10 (a). For caption see facing page. 

modes of the Holmboe wave pass by one another. The weaker eigeninodes are similar 
in appearance to mode 2. In  the remainder of figure lO(a) and in figure l O ( b ) ,  we 
continue to observe unstable modes which are associated with the plumes of the 
Holmboe wave. The ring-shaped structure which we found a t  t = 130 is seen again 
at t = 170, t = 210 and t = 250, although the convective modes which dominated at  
t = 130 do not appear a t  these subsequent times because the plume-ejection 
mechanism has not generated significant overturning in the strongly stratified region 
near e = 0. Maximum growth rates occur just prior to these points (i.e. a t  t = 120, 
160, 200 and 240), when the spatial extent of the plumes is greatest. 

In  figure 11 ( a ) ,  we show the growth rate u3D = crr of the dominant three- 
dimensional instability as a function of time (solid curve), along with the 
growth/decay rate of the kinetic energy associated with the two-dimensional wave, 
viz. : 

Over the period t = 11&260, the r.m.s. time average of gZD is 0.02, while the r.m.s. 
average of vQD over the same period is 0.10. By this measure, the unstable modes 
grow on a timescale which is separated by a factor of five from the 'slow ' timescale 
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FIGURE 10. (a )  Contours of k ‘ ( r , z )  (solid contours) and 8 ( r , z )  (dotted contours) for three- 
dimensional disturbances at selected times during the Ri = 0.28 simulation. Numerical values are 
also given for the growth rate and the contribution terms appearing on the right-hand side of (19) 
for each mode. ( b )  Continuation of (a). 

upon which the basic state evolves. This degree of timescale separation is at least 
sufficient to ensure that our normal-mode stability calculations deliver a quali- 
tatively accurate representation of the transition to three-dimensional motion. 

In figure 11 (b ) ,  we have plotted the various contributions to u3,, which appear on 
the right-hand side of (19). It is evident that the term YA, which represents 
instability due to the shearing deformation of the two-dimensional velocity field, is 
dominant over most of the wave’s history. The convection term R i X  also plays an 
important role in governing temporal variations in v3,,. Local maxima in v3D 
generally coincide with maxima in R i X  and with minima in Y A .  The Y t  term, which 
is associated with the straining deformation in the background flow, is generally of 
small magnitude. It does, however, make a significant contribution a t  or just prior 
to the times of maximum disturbance growth. The dissipation term 9 / R e  is 
uniformly negative, as expected. 

The quasi-periodicity which is evident in the time dependence of the dominant 
partial growth rates Y A  and R i X  is clearly connected with the oscillatory cycle 
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FIGURE 12. Contours of R'(z, z )  (solid contours) and 6(z, z )  (dotted contours) for three-dimensional 
disturbances at selected times during the Ri = 0.26 simulation. 

Kelvin-Helmholtz wave at Ri = 0.25. As was seen in $2, the early evolution of this 
wave features the appearance of distinct, phase-locked component modes which 
would counterpropagate to produce Holmboe instability if the value of Ri was 
slightly larger. The K plots for t = 50 and t = 60 reveal that the stability 
characteristics of the two-dimensional wave during this time are strongly reminiscent 
of the results obtained previously for the Holmboe wave (cf. figures 10 and 11). At 
subsequent times, we find modes driven primarily by convective activity in the 
statically unstable regions of the evolving Kelvin-Helmholtz vortex (cf. Klaassen & 
Peltier 1985b, c, 1991). 

The growth rates plotted in figure 15(a) confirm that timescale separation is 
excellent throughout this simulation. As is evident upon inspection of figure 15 (b) ,  
unstable modes are driven primarily by the shearing deformation of the two- 
dimensional flow previous to t = 40, after which convection becomes the dominant 
mechanism of instability. Note that the shear term once again increases in 
importance towards the end of the simulation. Results at  that stage must be 
interpreted with caution, however, owing to evident spatial underresolution. 

In figures 16 and 17, we show stability results for the final simulation in the 
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FIQURE 13. ( a )  Growth rates of -, the dominant three-dimensional normal mode and ---, the 
two-dimensional wave for the Ri = 0.26 simulation. ( b )  Contributions to vaD appearing on the right- 
hand side of (19). 

sequence, namely the Kelvin-Helmholtz wave with Ri = 0.23. In the K plots (figure 
16), we see once again the successive core-centred and ring-shaped unstable modes 
which are characteristic of the Kelvin-Helmholtz wave. The shea.r-driven unstable 
modes which we observe in the early stages of the wave's evolution are suggestive of 
the non-scale-selective, shear-driven, longitudinal instability which has been shown 
by Pierrehumbert (1986) to be a generic feature of non-parallel, inviscid, two- 
dimensional flows. At t = 60, the four strongest modes have nearly identical spatial 
distributions and have growth rates g = 0.308, 0.337 &O.O94i, 0.280f0.197i and 
0.161 f0.303i. The reader will note that the angular frequencies ri of these modes fall 
approximately into a 1:2:3 ratio which is reminiscent of the spectrum of a time- 
periodic phenomenon. Since the oscillatory modes occur in complex conjugate pairs, 
they represent standing waves with nodes distributed in the spanwise direction. At 
t = 70, we observe a similar pattern, with ~7 = 0.308, 0.301 +0.057i, 0.275fO.llOi 
and 0.231 +0.153i. This 'overtone ' pattern has been noted previously by Klaassen & 
Peltier (e.g. 1985b) in the stability analysis of Kelvin-Helmholtz waves evolving in 
a flow with Pr = 1.  The results from the Ri = 0.23 case thus show good qualitative 
agreement with the results of previous stability analyses of Kelvin-Helmholtz 
waves, with the important exception that the disturbance exhibits no preferred 
spanwise lengthscale (cf. figure 9 and the accompanying discussion). 

We see upon inspection of figure 17 (a )  that we have excellent tirnescale separation 
throughout this simulation. The evolution of the partial growth rates (figure 17 b )  is 
qualitatively identical to that found for the previous case Ri = 0.25 (cf. figure 15b) .  
We see that the shearing deformation provides the primary destabilizing influence 
near the beginning of the simulation, after which the convective contribution 
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FIQURE 14. Contours of &(z, z )  (solid contours) and 6(z, z )  (dotted contours) for three-dimensional 
disturbances at selected times during the Ri = 0.25 simulation. 

becomes dominant. Once again, the results pertaining to  the later stages of the 
simulation may be unreliable owing to underresolution, but it appears that  the Y A  
term is again becoming competitive with the convective term. The relative 
importance of the shear-driven and convective contributions is apparently correlated 
with the nonlinear oscillation which is evident in figure 2, which is itself associated 
with the nutation of the vortex core which occurs as the intrusions of dense and light 
fluid circulate (Klaassen & Peltier 1 9 8 5 ~ ) .  It appears entirely likely that the Y4PA and 
R i X  terms will, a t  subsequent times, execute a period out-of-phase oscillation 
similar to that found for the Holmboe wave (cf. figure l l b ) .  

The time histories of the partial growth rates Y A ,  Y t ,  R i Z  and B/Re for the four 
nonlinear wave simulations discussed in this paper exhibit remarkable similarities. 
In  each case we have seen a distinct positive correlation between Y t  and R i Z ,  and 
a negative correlation between these two terms and Y A .  These correlations are 
interesting in themselves, the more so because they are observed in the stability 
characteristics of two fundamentally dissimilar wave types. It appears that  the 
linear oscillation of the Holmboe wave and the nonlinear oscillation of the 
Kelvin-Helmholtz wave induce quasi-periodic variations in the two-dimensional 
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FIGURE 15. (a )  Growth rates of -, the dominant three-dimensional normal mode and ---, the 
two-dimensional wave for the Ri = 0.25 simulation. ( b )  Contributions to vj3 appearing on the right- 
hand side of (19). 

velocity and potential temperature fields which have very similar effects on the 
dynamics relevant to  three-dimensional secondary instabilities. This periodicity has 
been explained in the case of Holmboe waves (see the discussion accompanying figure 
l l b ) ,  and it seems likely that a similar mechanism operates in the case of 
Kelvin-Helmholtz waves (i.e. that the quasi-periodic exchange of energy between 
the potential and wave kinetic energy reservoirs which is associated with the 
nutation of the vortex core may induce a corresponding quasi-periodic variation in 
the relative importance of the physical processes represented by Y A ,  Y t ,  Yt' and 9 
in governing the evolution of three-dimensional disturbances). Unfortunately, the 
data needed to investigate this possibility are not presently available. 

4. Discussion 
We have seen by means of two-dimensional numerical simulations that nonlinear 

effects complicate significantly the distinction between Kelvin-Helmholtz and 
Holmboe instability near the KH-Holmboe transition. The ' marginal ' Kelvin- 
Helmholtz wave exhibits two internal features which are clearly identifiable as 
the component modes which would form a Holmboe wave if the stratification was 
slightly stronger. On the other side of the KH-Holmboe transition, the component 
modes of the 'marginal ' Holmboe wave counterpropagate until they reach sufficient 
amplitude to  cause sustained overturning of the central temperature interface. At 
this point, a manifestly nonlinear phase-locking event produces a stationary vortex 
structure which is virtually identical to a Kelvin-Helmholtz wave. 

Three-dimensional stability analyses have revealed a conspicuous absence of scale 
selectivity in the longitudinal secondary instabilities of both the Kelvin-Helmholtz 
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FIGURE 16. Contours of k ( z ,  z )  (solid contours) and 8(z, z )  (dotted contours) for three-dimensional 
disturbances at selected times during the Ri = 0.23 simulation. 

and the Holmboe waves near the KH-Holmboe transition. The laboratory 
experiments of Maxworthy & Browand (1975) yielded Holmboe wave-like structures 
which were distinctly three-dimensional by the time they reached visible amplitude. 
The spanwise variations in these waves indicated a well-defined wavelength which 
was similar in magnitude to the streamwise wavelength. (The three-dimensional 
structure of these waves is revealed more clearly in a videotape of the experiments 
which has been kindly provided to us by F. K. Browand.) While these observations 
are strongly suggestive of the three-dimensional primary Holmboe wave whose 
existence was demonstrated theoretically by Smyth & Peltier (1990), it could not be 
stated with certainty before now that the waves observed by Maxworthy & Browand 
(1975) were not a manifestation of secondary instability. However, it is easily seen 
upon inspection of figures 9(a) and 9(6) that Holmboe waves in a fluid with Pr % 1 
and Re too large to permit three-dimensional primary instability show no evidence 
of scale-selective secondary instability, particularly not in the regime of unit 
horizontal aspect ratio (b  x 01 = 0.3). We thus conclude that the experiments of 
Maxworthy & Browand (1975) were performed at sufficiently low Reynolds number 
to yield three-dimensional primary instability. 

14 FLM 228 
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FIGURE 17. (a )  Growth rates of -, the  dominant three-dimensional normal mode and ---, the 
two-dimensional wave for the  Ri = 0.23 simulation. ( b )  Contributions to  appearing on the right- 
hand side of (19). 

Through detailed examinations of the spatial structures of the unstable modes of 
the Holmboe wave, we have learned that secondary instability is intimately 
associated with the plumes of the wave, and is most intense during the phase of the 
oscillation cycle in which the plumes are largest, particularly if the central 
temperature interface is overturned. In this part of the cycle, instability is driven 
primarily by a mixture of convective activity and the influence of the shearing 
deformation in the two-dimensional wave. At other points in the cycle, secondary 
convective activity subsides and the remaining instability is driven primarily by 
shear. In  the laboratory experiments of Browand & Winant (1973) and Koop (1976), 
Holmboe waves were observed which were essentially two-dimensional except for 
turbulent ‘puffs’ which appeared a t  the tips of the plumes. These observations are 
in excellent accord with the predicted characteristics of the non-scale-selective 
secondary instability which we have discussed in this paper. 

The Holmboe waves observed by Browand & Winant (1973) are of particular 
interest because they appeared after the flow had evolved through a phase in which 
strong Kelvin-Helmholtz instability was present. This observation substantiates our 
earlier contention (see tj 1) that the action of diffusion on a high-Prandtl-number 
fluid, in spite of (or perhaps aided by) the temporary appearance of Kelvin- 
Helmholtz instability, tends to drive the flow towards a state characterized by 
Holmboe instability. We thus suggest that Holmboe waves should be a common 
feature of mixing layers occurring in the Earth’s oceans, and may in fact account for 
a substantial amount of mixing in regions of the ocean interior which have previously 
been assumed to be stable in consequence of large values of the Richardson number. 

In  the analysis of Kelvin-Helmholtz waves, we have found secondary stability 
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characteristics which are similar to those obtained by Klaassen & Peltier (1985a, b,  
1991) for the case R = 1 ,  Pr = 1, with the exception that the scale selectivity which 
was observed in those analyses is not evident in the present results. The validity of 
Klaassen & Peltier's results has been substantiated in the laboratory experiments of 
Thorpe (1985), in which the scale ratio R was in the range 1-1.7 and Pr had a value 
of 800. These experiments revealed scale-selective longitudinal instabilities in 
accordance with the predictions of Klaassen & Peltier (1985b, c ) ,  despite the large 
Prandtl number of the working fluid. It is thus apparent that the absence of scale 
selectivity in the results of the present analyses is due not only to the large value we 
have employed for the Prandtl number (Pr = 9) and the intense temperature 
gradients which the model flow can sustain as a result, but also to the sharp 
temperature gradient which is present in our initial conditions (R = 3 ) .  

In a future publication, we shall discuss transverse instabilities of KH and 
Holmboe waves, in particular the subharmonic instabilities which play a crucial role 
in the evolution of weakly stratified shear layers. The experimental results of 
Lawrence et al. (1987), suggest that the Holmboe wave may exhibit a non-orbital 
pairing instability, whereas our own preliminary results indicate that subharmonic 
instability is suppressed in these strongly stratified flows. 

Future research must also focus upon the evolution of stratified shear layers in 
which the stratified layer and/or the horizontal boundaries are located asym- 
metrically with respect to the centre of the shear layer, as some degree of asymmetry 
is invariably present in naturally-occurring flows. 

Appendix 

which appear in (18) : 
The following are explicit expressions for the four-dimensional coefficient arrays 

( wu>;; = - <G:/4 

(WW);; = - iBh(GI,/4 oGA,,) - D,( G: *FA,,) - (G: G,,,,) - Rep1&,,, S,,, A,,, 
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in which 

S is the Kronecker delta and the inner product (.) is defined by 

B, = ha+b, D, = v x / H ,  A,, = Bi+D,2+d2, 

(.)=-i 2 H  d z 1  d x . .  
0 LH 
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